Exam Seat No:

Enrollment No:

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013

Subject Name: -Quantum Mechanics-I

Marks:70

Course Name :M.Sc(Physics) Sem-I **Duration :- 3:00 Hours**

Date : 20/12/2013

Instructions:-(1) Attempt all Questions of both sections in same answer book / Supplementary. (2) Use of Programmable calculator & any other electronic instrument is prohibited. (3) Instructions written on main answer Book are strictly to be obeyed. (4) Draw neat diagrams & figures (If necessary) at right places. (5) Assume suitable & Perfect data if needed. **SECTION-I** Q.1 Write answers of the following Questions. 1. What is zero point energy? 1 2. Prove that $J_{-}J_{+}=J^{2}-J_{z}^{-}\hbar J_{z}$ 2 2 3. In the solution of Harmonic Oscillator $\mathbf{u}_{\infty} = \exp(\pm \xi^2/2)$, the positive exponent is avoided, Why? 2 4. Prove that $[H,a] = -\hbar\omega a$ Q.2 A. Discuss Harmonic Oscillator energy spectrum in brief and plot 5 Eigen function for n=0 to n=5.B. Discuss Spherical harmonics in detail and obtain Y₀₀, Y₁₀ and Y₂₀. 5 C. Derive the Energy Eigen value of Hydrogen atom. 4 OR A. Derive the following equation using power series solution, $a_{n+2} = \frac{2}{n+2} a_n$ B. Using the relations of rectangular and spherical polar coordinates, 5 Q.2 5 obtain $L_z = i \frac{\partial}{\partial h}$ C. Using the solution of Schrodinger equation in three dimension, 4 $\frac{\partial \Phi}{\partial t^2} + \Phi m^2 = 0$ prove A. What is One dimensional Harmonic Oscillator ? Derive the 7 Q.3 following equation, $\frac{d^2h}{d\xi^2} - 2\xi \frac{dh}{d\xi} + h(\Box - 1) = 0$ 7 B. Define Raising and Lowering operators in brief. OR A. For attractive coulomb potential $V(r) = -\frac{c}{r}$, solve Schrödinger radial 7 Q.3 equation and prove that energy Eigen values are $E_n = -\frac{mz^2e^4}{2\hbar^2n^2}$. B. Discuss the solution of Harmonic Oscillator in Polar Co-7 ordinates.

20

Q.4	 SECTION-II Write answers of the following Questions. 1. Why WKB approximation is called semi-classical approximation? 2. What is Dirac's Bra and Ket Notation? 3. What are the applications of Fermi Golden Rule? 4. In the Time independent perturbation Theory in the following Equation (E_n-E_m)C_k⁽¹⁾+H¹ km⁻W⁽¹⁾δ_{km}=0 H¹ km suggests what? What are the E_n and E_m ? 	1 2 2 2
Q.5	A. Explain WKB approximation.B. Discuss the Variation method in terms of upper bound and ground state energy.	5 5
	C. Define the Matrix Representation of an Operator. OR	4
Q.5	A. Explain the Unitary operators.B. Discuss the Dirac-delta function with necessary diagram.C. What is Stark effect? Discuss it in brief.	5 5 4
Q.6	 A. Explain the Periodic Perturbation in Brief. B. Explain the Time dependent perturbation theory with general formulation and first order theory. 	7 7
Q.6	A. Explain the Interaction of Electromagnetic Field with atom. B. Show that the perturbation removes degeneracy and obtain $w^{(1)} = \frac{1}{2}(h_{11} + h_{22}) \pm \frac{1}{2}[(h_{11} - h_{22})^2 + 4h_{12}h_{21}]$	7 7

********20*********

2/2

